Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Insects ; 15(3)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38535392

RESUMO

Culex quinquefasciatus is an important target for vector control because of its ability to transmit pathogens that cause disease. Most populations are resistant to pyrethroids and often to organophosphates, the two most common classes of active ingredients used by public health agencies. A knockdown resistance (kdr) mutation, resulting in an amino acid change from a leucine to phenylalanine in the voltage gated sodium channel, is one mechanism contributing to the pyrethroid resistant phenotype. Enzymatic resistance has also been shown to play a very important role. Recent studies have shown strong resistance in populations even when kdr is relatively low, which indicates that factors other than kdr may be larger contributors to resistance. In this study, we examined, on a statewide scale (over 70 populations), the strength of the correlation between resistance in the CDC bottle bioassay and the kdr genotypes and allele frequencies. Spearman correlation analysis showed only moderate (-0.51) or weak (-0.29) correlation between the kdr genotype and permethrin or deltamethrin resistance, respectively. The frequency of the kdr allele was an even weaker correlate than genotype. These results indicate that assessing kdr in populations of Culex quinquefasciatus is not a good surrogate for phenotypic resistance testing.

2.
PLoS One ; 19(2): e0296046, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38346028

RESUMO

Sporadic outbreaks of human cases of West Nile virus (WNV), primarily vectored by Culex quinquefasciatus Say in suburban and urban areas, have been reported since introduction of the virus into Florida in 2001. Miami-Dade County, Florida is part of one of the largest metropolitan areas in the United States, supports Cx. quinquefasciatus year-round, and recently experienced over 60 human cases of WNV during one outbreak. To facilitate more effective integrated vector management and public health protection, we used the Centers for Disease Control and Prevention (CDC) bottle bioassay method to evaluate the susceptibility of adult Cx. quinquefasciatus collected from 29 locations throughout Miami-Dade County to pyrethroid and organophosphate adulticide active ingredients (AIs) used by Miami-Dade County Mosquito Control. We also determined the frequency of the 1014 knockdown resistance (kdr) mutation for Cx. quinquefasciatus from a subset of 17 locations. We detected resistance to two pyrethroid AIs in all tested locations (permethrin: 27 locations, deltamethrin: 28 locations). The 1014F allele was widely distributed throughout all 17 locations sampled; however, 29.4% of these locations lacked 1014F homozygotes even though phenotypic pyrethroid resistance was present. Organophosphate resistance was more variable; 20.7% of the locations tested were susceptible to malathion, and 33.3% of the populations were susceptible to naled. We subsequently conducted a field trial of ReMoa Tri, a recently approved multiple AI adulticide formulation labelled for resistant mosquitoes, against a mixed location field population of Miami-Dade Cx. quinquefasciatus. Average 24-hr mortality was 65.1 ± 7.2% and 48-hr mortality increased to 85.3 ± 9.1%, indicating good control of these resistant Cx. quinquefasciatus. This current study shows that insecticide resistance is common in local Cx. quinquefasciatus but effective options are available to maintain control during active disease transmission in Miami-Dade County.


Assuntos
Culex , Inseticidas , Piretrinas , Animais , Humanos , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Culex/genética , Controle de Mosquitos/métodos , Malation
3.
Front Microbiol ; 14: 1138476, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37007535

RESUMO

Introduction: Wolbachia transinfections established in key mosquito vectors, including Aedes aegypti are typically associated with pathogen blocking-reduced susceptibility to infection with key pathogens and reduced likelihood those pathogens are transmitted to new hosts. Host-symbiont-virus interactions are less well understood in mosquitoes like Culex quinquefasciatus, which naturally harbor Wolbachia, with pathogen blocking observed in some populations but not others, potentially due to innate differences in their Wolbachia load. In nature, mosquito larvae are often subject to developmental stresses associated with larval competition, which can lead to reduced body size and differential susceptibility to arbovirus infection. Methods: In this study, we sought to understand whether competition stress and Wolbachia infection in Cx. quinquefasciatus combine to impact host fitness and susceptibility to infection with West Nile virus. We reared Wolbachia-infected and uninfected Cx. quinquefasciatus larvae under three competition stress levels, increasing larval density without increasing the amount of food supplied. We then monitored larval development and survival, measured wing length and quantified Wolbachia density in adults, and then challenged mosquitoes from each treatment group orally with West Nile virus. Results and Discussion: We observed that high competition stress extended development time, decreased the likelihood of eclosion, decreased body size, and increased susceptibility to West Nile virus (WNV) infection. We also observed that Wolbachia infection reduced WNV load under low competition stress, and significantly improved the rate of survival for larval reared under higher competition stress. Consequently, our data suggest that native Wolbachia infection in Cx. quinquefasciatus has differential consequences for host fitness and susceptibility to WNV infection depending on competition stress.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA